Exercice 1

- 1. Soit E un espace vectoriel sur le corps $\mathbb C$ de dimension finie n>0. Soit u un endomorphisme de E de rang 1.
 - (i) En discutant sur la dimension de $\text{Im} u \cap \text{Ker} u$, montrer que $E = \text{Im} u \oplus \text{Ker} u$ ou $\text{Im} u \subset \text{Ker} u$.
 - (ii) Soit e un vecteur non nul de Imu. Justifier l'existence d'une base de E dont le premier vecteur est e. Dans le cas où Im $u \subset \text{Ker} u$, quelle est la forme de la matrice de u sur une telle base?
 - (ii) Dans le cas où $\text{Im} u \subset \text{Ker} u$, montrer que Tr(u) = 0.
 - (iii) Montrer alors l'équivalences des trois assertions :
 - (a) u est diagonalisable.
 - (b) $E = \text{Im} u \oplus \text{Ker} u$.
 - (c) $Tr(u) \neq 0$.

On note $\mathcal{M}_n(\mathbb{C})$ le \mathbb{C} -espace vectoriel des matrices (n,n) à coefficients dans \mathbb{C} . On note $\mathcal{M}_n(\mathbb{C})^*$ le dual de $\mathcal{M}_n(\mathbb{C})$, c'est à dire l'espace vectoriel des formes linéaires sur $\mathcal{M}_n(\mathbb{C})$.

2. Soit A dans $\mathcal{M}_n(\mathbb{C})$. On note F_A l'application définie sur $\mathcal{M}_n(\mathbb{C})$ par :

$$\forall X \in \mathcal{M}_n(\mathbb{C}), \ F_A(X) = Tr(AX),$$

où Tr(AX) désigne la trace de la matrice AX.

- (i) Montrer que F_A est une forme linéaire sur $\mathcal{M}_n(\mathbb{C})$.
- (ii) On considère l'application F définie par :

$$F: \mathcal{M}_n(\mathbb{C}) \to \mathcal{M}_n(\mathbb{C})^*$$

 $A \mapsto F_A$

Montrer que F est linéaire.

- (iii) Soit $(E_{i,j})_{(i,j)\in\{1,...,n\}\times\{1,...,n\}}$ la base canonique de $\mathcal{M}_n(\mathbb{C})$ (on rappelle que la matrice $E_{i,j}$ est la matrice dont tous les coefficients sont nuls, excepté le (i,j)-ième qui est égal à 1). Pour tout $(i,j)\in\{1,...,n\}\times\{1,...,n\}$, exprimer $F_A(E_{i,j})$ en fonction des coefficients de A. En déduire que F est injective.
- (iv) Montrer que F est un isomorphisme.
- 3. Soit J une matrice non nulle de $\mathcal{M}_n(\mathbb{C})$ et soit f une forme linéaire non nulle sur $\mathcal{M}_n(\mathbb{C})$. On considère l'application ψ_f définie par :

$$\begin{array}{cccc} \psi_f & : & \mathcal{M}_n(\mathbb{C}) & \to & \mathcal{M}_n(\mathbb{C}) \\ & X & \mapsto & f(X)J \end{array}.$$

On remarquera que ψ_f est un endomorphisme de $\mathcal{M}_n(\mathbb{C})$.

(i) Justifier l'existence d'une unique matrice A de $\mathcal{M}_n(\mathbb{C})$ telle que :

$$\forall X \in \mathcal{M}_n(\mathbb{C}), f(X) = Tr(AX).$$

- (ii) Comparer le noyau de ψ_f et le noyau de f. Quel est l'image de ψ_f ? Quel est le rang de ψ_f ?
- (iii) Exprimer la trace de ψ_f en fonction de A et J.
- (iv) En déduire une condition nécessaire et suffisante portant sur A et J pour que ψ_I soit diagonalisable.